Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Infestation and hydraulic consequences of induced carbon starvation.

Identifieur interne : 002A19 ( Main/Exploration ); précédent : 002A18; suivant : 002A20

Infestation and hydraulic consequences of induced carbon starvation.

Auteurs : William R L. Anderegg [États-Unis] ; Elizabeth S. Callaway

Source :

RBID : pubmed:22665446

Descripteurs français

English descriptors

Abstract

Drought impacts on forests, including widespread die-off, are likely to increase with future climate change, although the physiological responses of trees to lethal drought are poorly understood. In particular, in situ examinations of carbon starvation and its interactions with and effects on infestation and hydraulic vulnerability are largely lacking. In this study, we conducted a controlled, in situ, repeated defoliation experiment to induce carbon stress in isolated trembling aspen (Populus tremuloides) ramets. We monitored leaf morphology, leaves per branch, and multitissue carbohydrate concentrations during canopy defoliation. We examined the subsequent effects of defoliation and defoliation-induced carbon stress on vulnerability to insect/fungus infestation and hydraulic vulnerability the following year. Defoliated ramets flushed multiple canopies, which coincided with moderate drawdown of nonstructural carbohydrate reserves. Infestation frequency greatly increased and hydraulic conductivity decreased 1 year after defoliation. Despite incomplete carbohydrate drawdown from defoliation and relatively rapid carbohydrate recovery, suggesting considerable carbohydrate reserves in aspen, defoliation-induced carbon stress held significant consequences for vulnerability to mortality agents and hydraulic performance. Our results indicate that multiyear consequences of drought via feedbacks are likely important for understanding forests' responses to drought and climate change over the coming decades.

DOI: 10.1104/pp.112.198424
PubMed: 22665446
PubMed Central: PMC3425219


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Infestation and hydraulic consequences of induced carbon starvation.</title>
<author>
<name sortKey="Anderegg, William R L" sort="Anderegg, William R L" uniqKey="Anderegg W" first="William R L" last="Anderegg">William R L. Anderegg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, California 94305, USA. anderegg@stanford.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Stanford University, Stanford, California 94305</wicri:regionArea>
<wicri:noRegion>California 94305</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Callaway, Elizabeth S" sort="Callaway, Elizabeth S" uniqKey="Callaway E" first="Elizabeth S" last="Callaway">Elizabeth S. Callaway</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22665446</idno>
<idno type="pmid">22665446</idno>
<idno type="doi">10.1104/pp.112.198424</idno>
<idno type="pmc">PMC3425219</idno>
<idno type="wicri:Area/Main/Corpus">002A11</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002A11</idno>
<idno type="wicri:Area/Main/Curation">002A11</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002A11</idno>
<idno type="wicri:Area/Main/Exploration">002A11</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Infestation and hydraulic consequences of induced carbon starvation.</title>
<author>
<name sortKey="Anderegg, William R L" sort="Anderegg, William R L" uniqKey="Anderegg W" first="William R L" last="Anderegg">William R L. Anderegg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Stanford University, Stanford, California 94305, USA. anderegg@stanford.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Stanford University, Stanford, California 94305</wicri:regionArea>
<wicri:noRegion>California 94305</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Callaway, Elizabeth S" sort="Callaway, Elizabeth S" uniqKey="Callaway E" first="Elizabeth S" last="Callaway">Elizabeth S. Callaway</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Carbohydrate Metabolism (MeSH)</term>
<term>Carbon (deficiency)</term>
<term>Carbon (metabolism)</term>
<term>Colorado (MeSH)</term>
<term>Insecta (physiology)</term>
<term>Organ Specificity (MeSH)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Diseases (parasitology)</term>
<term>Plant Leaves (physiology)</term>
<term>Populus (microbiology)</term>
<term>Populus (parasitology)</term>
<term>Populus (physiology)</term>
<term>Starch (metabolism)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Sucrose (metabolism)</term>
<term>Water (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Amidon (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Carbone (déficit)</term>
<term>Carbone (métabolisme)</term>
<term>Colorado (MeSH)</term>
<term>Eau (métabolisme)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Insectes (physiologie)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Maladies des plantes (parasitologie)</term>
<term>Métabolisme glucidique (MeSH)</term>
<term>Populus (microbiologie)</term>
<term>Populus (parasitologie)</term>
<term>Populus (physiologie)</term>
<term>Saccharose (métabolisme)</term>
<term>Spécificité d'organe (MeSH)</term>
<term>Stress physiologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Carbon</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Starch</term>
<term>Sucrose</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Carbone</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Amidon</term>
<term>Carbone</term>
<term>Eau</term>
<term>Saccharose</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Plant Diseases</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Insectes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Insecta</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Carbohydrate Metabolism</term>
<term>Colorado</term>
<term>Organ Specificity</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Colorado</term>
<term>Métabolisme glucidique</term>
<term>Spécificité d'organe</term>
<term>Stress physiologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Drought impacts on forests, including widespread die-off, are likely to increase with future climate change, although the physiological responses of trees to lethal drought are poorly understood. In particular, in situ examinations of carbon starvation and its interactions with and effects on infestation and hydraulic vulnerability are largely lacking. In this study, we conducted a controlled, in situ, repeated defoliation experiment to induce carbon stress in isolated trembling aspen (Populus tremuloides) ramets. We monitored leaf morphology, leaves per branch, and multitissue carbohydrate concentrations during canopy defoliation. We examined the subsequent effects of defoliation and defoliation-induced carbon stress on vulnerability to insect/fungus infestation and hydraulic vulnerability the following year. Defoliated ramets flushed multiple canopies, which coincided with moderate drawdown of nonstructural carbohydrate reserves. Infestation frequency greatly increased and hydraulic conductivity decreased 1 year after defoliation. Despite incomplete carbohydrate drawdown from defoliation and relatively rapid carbohydrate recovery, suggesting considerable carbohydrate reserves in aspen, defoliation-induced carbon stress held significant consequences for vulnerability to mortality agents and hydraulic performance. Our results indicate that multiyear consequences of drought via feedbacks are likely important for understanding forests' responses to drought and climate change over the coming decades.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22665446</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>12</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>159</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2012</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Infestation and hydraulic consequences of induced carbon starvation.</ArticleTitle>
<Pagination>
<MedlinePgn>1866-74</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.112.198424</ELocationID>
<Abstract>
<AbstractText>Drought impacts on forests, including widespread die-off, are likely to increase with future climate change, although the physiological responses of trees to lethal drought are poorly understood. In particular, in situ examinations of carbon starvation and its interactions with and effects on infestation and hydraulic vulnerability are largely lacking. In this study, we conducted a controlled, in situ, repeated defoliation experiment to induce carbon stress in isolated trembling aspen (Populus tremuloides) ramets. We monitored leaf morphology, leaves per branch, and multitissue carbohydrate concentrations during canopy defoliation. We examined the subsequent effects of defoliation and defoliation-induced carbon stress on vulnerability to insect/fungus infestation and hydraulic vulnerability the following year. Defoliated ramets flushed multiple canopies, which coincided with moderate drawdown of nonstructural carbohydrate reserves. Infestation frequency greatly increased and hydraulic conductivity decreased 1 year after defoliation. Despite incomplete carbohydrate drawdown from defoliation and relatively rapid carbohydrate recovery, suggesting considerable carbohydrate reserves in aspen, defoliation-induced carbon stress held significant consequences for vulnerability to mortality agents and hydraulic performance. Our results indicate that multiyear consequences of drought via feedbacks are likely important for understanding forests' responses to drought and climate change over the coming decades.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Anderegg</LastName>
<ForeName>William R L</ForeName>
<Initials>WR</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Stanford University, Stanford, California 94305, USA. anderegg@stanford.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Callaway</LastName>
<ForeName>Elizabeth S</ForeName>
<Initials>ES</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>06</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>57-50-1</RegistryNumber>
<NameOfSubstance UI="D013395">Sucrose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-25-8</RegistryNumber>
<NameOfSubstance UI="D013213">Starch</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050260" MajorTopicYN="N">Carbohydrate Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="Y">deficiency</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003120" MajorTopicYN="N">Colorado</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007313" MajorTopicYN="N">Insecta</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009928" MajorTopicYN="N">Organ Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="Y">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013213" MajorTopicYN="N">Starch</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013395" MajorTopicYN="N">Sucrose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>6</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>6</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>12</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22665446</ArticleId>
<ArticleId IdType="pii">pp.112.198424</ArticleId>
<ArticleId IdType="doi">10.1104/pp.112.198424</ArticleId>
<ArticleId IdType="pmc">PMC3425219</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Oecologia. 2004 Jul;140(2):234-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15148601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2004 Mar;139(1):55-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14740291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1444-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18556546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):E106; author reply E107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19805249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Oct 18;102(42):15144-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16217022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2000 Nov 15;262(3):201-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11087026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Feb;107(2):575-585</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2011 Oct;26(10):523-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21802765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(3):561-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16411958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(2):274-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20409184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 May 25;316(5828):1181-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17412920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Mar;155(3):1051-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21239620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Apr 24;452(7190):987-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18432244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2009 Oct;29(10):1259-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19671568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1551-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18230736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;178(4):719-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18422905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Mar;31(3):250-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21444372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):E68; author reply e69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19506239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7063-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19365070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 May;190(3):750-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21261625</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Callaway, Elizabeth S" sort="Callaway, Elizabeth S" uniqKey="Callaway E" first="Elizabeth S" last="Callaway">Elizabeth S. Callaway</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Anderegg, William R L" sort="Anderegg, William R L" uniqKey="Anderegg W" first="William R L" last="Anderegg">William R L. Anderegg</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A19 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002A19 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22665446
   |texte=   Infestation and hydraulic consequences of induced carbon starvation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22665446" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020